Cardassian Expansion : a Model in which the Universe is Flat , Matter Dominated , and Accelerating

نویسنده

  • Matthew Lewis
چکیده

A modification to the Friedmann Robertson Walker equation is proposed in which the universe is flat, matter dominated, and accelerating. An additional term, which contains only matter or radiation (no vacuum contribution), becomes the dominant driver of expansion at a late epoch of the universe. During the epoch when the new term dominates, the universe accelerates; we call this period of acceleration the Cardassian era. The universe can be flat and yet consist of only matter and radiation, and still be compatible with observations. The energy density required to close the universe is much smaller than in a standard cosmology, so that matter can be sufficient to provide a flat geometry. The new term required may arise, e.g., as a consequence of our observable universe living as a 3-dimensional brane in a higher dimensional universe. The Cardassian model survives several observational tests, including the cosmic background radiation, the age of the universe, the effective change in Newton’s constant, the cluster baryon fraction, and structure formation. Typeset using REVTEX

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Cardassian Expansion: a Model in Which the Universe Is Flat, Matter Dominated, and Accelerating

The Cardassian universe is a proposed modification to the Friedmann Robertson Walker equation (FRW) in which the universe is flat, matter dominated, and accelerating. In this presentation, we generalize the original Cardassian proposal to include additional variants on the FRW equation; specific examples are presented. In the ordinary FRW equation, the right hand side is a linear function of th...

متن کامل

Generalized Cardassian Expansion : Models in which the Universe is Flat , Matter Dominated , and Accelerating

The Cardassian universe is a proposed modification to the Friedmann Robertson Walker equation in which the universe is flat, matter dominated, and accelerating. Here we generalize the original Cardassian proposal to include additional variants on the FRW equation; specific examples are presented. In the ordinary FRW equation, the right hand side is a linear function of the energy density, H2 ∼ ...

متن کامل

Generalized Cardassian Expansion : Models in Which the Universe is Flat , Matter Dominated

The Cardassian universe is a proposed modification to the Friedmann Robertson Walker (FRW) equation in which the universe is flat, matter dominated, and accelerating. Here we generalize the original Cardassian proposal to include additional variants on the FRW equation. Specific examples are presented. In the ordinary FRW equation, the right hand side is a linear function of the energy density,...

متن کامل

Cardassian Expansion: Dark Energy Density from Modified Friedmann Equations

The Cardassian universe is a proposed modification to the Friedmann equation in which the universe is flat, matter dominated, and accelerating. In the ordinary Friedmann equation, the right hand side is a linear function of the energy density, H ∼ ρ. Here, instead, the right hand side of the Friedmann equation is a different function of the energy density, H ∼ g(ρ). This function returns to ord...

متن کامل

Cardassian Expansion: Constraints from Compact Radio Source Angular Size versus Redshift Data

The “Cardassian Expansion Scenario” was recently proposed by Freese & Lewis as an alternative to a cosmological constant in explaining the current accelerating universe. In this paper we investigate observational constraints on this scenario from recent measurements of the angular size of high-z compact radio sources compiled by Gurvits and coworkers. We show that the allowed intervals for n an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002